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ABSTRACT
The goal of this paper is to investigate the possibility to identify
structural  landmarks  using  movement  data  collected  during an
event  of  a  location-based  game.  Landmarks  are  visually,
structurally  or  cognitively  salient,  spatial  features  used  for
example  for  navigation  purposes  to  situate  and  to  orientate
oneself within the own world and to locate proximate or distant
objects  or  locations  within  this  space.  Structural  salience  is  a
characteristic  of a  landmark  defined  by the  prominence  of its
spatial  position.  We  use  relations  between  movement and
landmarks in order to reason about the structural significance of
locations  in  a  city  park,  based  on  the  movement  behavior
exhibited  by  the  players  of  the  location-based  game  called
Ostereiersuche. The results of this study suggest that structurally
salient  landmarks  can  be  identified  based  on  an  analysis  of
movement  events  recorded  in  a  location-based  game.  The
introduced  „player  movement  -  landmark  detection  loop“
represents a first instance of a landmark management system as
one layer of a mobile game play ecosystem, the mobile game lab.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models

H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Algorithms, Measurement, Experimentation, Human Factors.

Keywords
Landmark identification, movement analysis, games with 
purpose, location-based games.

1. INTRODUCTION
A Location-Based Game (LBG) is  a special  type of game that,
being  played,  involves  physical  movement  of  players  in
geographical  space.  LBGs require  some form of localization to
track  positions  of  their  players  and  their  game  objects.  The
availability  of  the  global  positioning  system  (GPS)  and  the
increasing distribution of smartphones deliver  LBG a powerful
platform  for  precise  positioning,  computation,  and
communication.  As  a  result,  most  of the  LBGs  nowadays  are

built  upon this  platform.  Recent  remarkable  examples  include
“Shadow Cities” (Grey Area) and “Ingress” (Google).

Enabling data  collection on user  movement in space like other
mobile  services,  a LBG seem to be additionally a candidate  to
apply  concepts  of  “games  with  purpose”  to  solve  some
computational  problems  in  geographic  information  science
(GIScience).  “Games with purpose” is a concept of turning the
process  of  solving  complex  computational  problems  into
entertaining  activities.  “People  play  not  because  they  are
personally interested  in solving an instance of a computational
problem  but  because  they  wish to  be  entertained”  (von  Ahn,
2008).  An  application  of  simple  game  mechanics  allows
foursquare1 to  collect  and  maintain  an  expanding  dataset  of
places. A similar approach can help, for example, openstreetmap
to involve non-mappers into mapping activities. 

Much of the research in GIScience is done to improve navigation
devices for pedestrians by including landmarks (e.g. Elias et al.,
2003,  Raubal  et  al.,  2002,  Hile et al.,  2008).  Many of existing
systems for pedestrian navigation work however as those used for
cars  –  only  communicating  street  networks  and  metrics.  The
main reason for this  is the difficulty to retrieve data that allow
extracting landmarks.  Automatic determination of landmarks is
limited,  because of complex nature of landmarks.  Meaning and
relevance of a landmark may depend on the specific person and
this  person’s  activity  within  a  particular  situation.  Landmarks
may  change  over  time.  Eventually  a  landmark  unfolds  its
particular meaning as a node within a system of landmarks. What
follows is that the automatic determination of landmarks has to
be supplemented by human’s activities and implicit validation of
landmarks or by analyzing human behavior (see Section 2).

Within  the  BMBF2-Research  Project  „Landmarken  Mobiler
Unterhaltung –  Landmarks  of Mobile  Entertainment“  (2010  –
2015)  we  are  building3 a  mobile  game  play  ecosystem,  the
Mobile  Game Lab.  Local communities  of players  continuously
playing  mobile  games  participate  indirectly  in  the  creation  of
local  landmark  systems  and  dynamic  maps  by  means  of  an
in-built  landmark  management  system  (LMS).  The  LMS  is
designed to analyze semi-automatically movement data of players
and to extract landmarks for local maps to be used for navigation
purposes.  From where  we stand  today we will  have two local
instances of the Mobile  Game Lab in January 2014 beside  the
online-platform already working since spring 2011: (1) A Mobile

1Foursquare is a free app that helps you and your friends make
the most of where you are. https://foursquare.com/
2BMBF: Bundesministerium für Bildung und Forschung, Federal
Ministry of Education and Research
3To  build  an  eco-system  seems  to  be  an  appropriate  concept
regarding the technical elements of an eco-system. Regarding the
social  and  cultural  dimensions  of  an  eco-system  however,  to
initiate, grow or cultivate seem to be more appropriate .
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Game Lab am Postamt 5 in Bremen, which allows players to play
and to develop mobile games themselves and which supports the
collaboration  of players,  developers  and  researchers  of Mobile
Games; (2) The Mobile Game Lab Ahaus, which allows players
of different ages to experience the small city of Ahaus by means
of mobile games, to develop local games themselves by means of
game editors and to participate indirectly in the creation of local
maps. 

In this  paper  we present  a first  step  in  building the  LMS and
discuss a method for identifying structural  landmarks based on
the analysis of movement data of people playing the mobile game
Ostereiersuche. The movement data collected provide geospatial,
non-continuous  trajectories  of players.  Analyzing  the  data  our
current  goal  is  to  identify  areas,  which  stand  out  from their
environment  in  terms  of  attractiveness  and  accessibility.  We
applied a variation of the PageRank algorithm (Page et al., 1999)
to find such areas that we call structural landmarks (see below).
Our qualitative validation of the results  of this  method reveals
that many of the identified areas are meaningful with regard to
navigation purposes. Some identified areas, however, seem to be
artifacts. 

The paper is structured as follows. First, we offer a definition of
a landmark and discuss approaches for landmark identification.
Second,  we  describe  the  location  based-game  called
Ostereiersuche,  which  we  use  to  collect  movement  data  of
players and thereby to identify structural  landmarks.  Third,  we
offer a simple model of space and its representation in form of a
directed  graph.  Then,  we  describe  the  analytical  methods
implemented  as algorithms for the identification of structurally
salient nodes in this graph. Finally, we present the results of the
application of these methods to a data sample. We, then, discuss
the results and limitations of the method.

2. LANDMARK IDENTIFICATION 
BASED ON MOVEMENT DATA
Landmarks are visually, structurally or cognitively salient, spatial
features that people use to understand the world, to situate and
orientate  themselves,  to  locate  objects  or  locations  within  this
world and to navigate.  The key characteristic  of a landmark is
“singularity,  some  aspect  that  is  unique  or  memorable  in  the
context” (Lynch, 1960). The singularity of a landmark is defined
through  a  particular combination of  visual,  or  more  general
discernible,  cognitive,  and/or  structural  characteristics  (cf.
Sorrows and Hirtle, 1999), by means of which, this geographical
feature  becomes  distinguishable  in  its  environment.  Visual
salience  describes  objects  that  stand  out  due  to  the  visually
perceivable contrast  with their  surroundings. Cognitive salience
is  measured  through the  special  unique  meaning  of an  object.
Structural  salience is a characteristic of a landmark defined by
the prominence of its spatial position.

Landmark  knowledge  is  one of the  basic  conditions  of spatial
cognition  (Mark  et  al.,  1999).  It  allows  humans  to  identify
objects  and  their  position  in  space  in  relation  to  their  own
position.  The  quality  of  landmark  knowledge  impacts  success
and efficiency of navigation. There have been numerous attempts
to use landmarks  in GIS. Winter  et  al.,  in 1999,  Hile  et  al.  in
2008,  Fang  et  al.  in  2011,  demonstrated  the  benefits  of
employing landmarks  in  pedestrian  navigation.  Sorrows,  Hirtle
(Sorrows et al., 1999), and Vinson (Vinson, 1999) discussed the
use  of landmarks  in  virtual  spaces.  Elias  offered  methods  for
automated  landmark  identification  using  cadastral  datasets
through application of data mining techniques (Elias, 2003). She
also offered guidelines for using landmarks in cartography (Elias,
2008). Similarly to Elias, Nothegger, Winter, Raubal (Nothegger

et  al.,  2004)  addressed  the  challenges  of automated  landmark
identification. They offered a computational model for assessing
the  salience  of  spatial  objects  as  a  combination  of  visual,
cognitive  and  structural  components.  This  model  was  used  to
automatically select salient features, from a cadastral dataset, for
route directions.

Despite  these  advances,  landmark  identification  remains
unsatisfactory.  Sadeghian  and  Kantardzic  outlined  several
reasons  for  this  in  their  work  on  “the  new  generation  of
automatic landmark detection systems” (Sadeghian et al., 2008).
Among  others,  they  “advocate  the  importance  of  analyzing
dynamic  object  attributes”  (Highlighted  by  Jordan  et  al.)  for
landmark  identification4.  Those  attributes  represent  “previous
people’s  associations,  interactions  and  dealings  with  the
objects”. In contrast, the static attributes are measurable physical
properties  like  “height,  width,  color”,  etc.  All  methods  of
automatic landmark identification discussed earlier were applied
only  to  cadastral  databases.  Often,  these  datasets  contain  a
registry  of  spatial  objects  and  their  attributes  but  little
information  on  how  people  actually  use  these  objects.  Such
information  may  contain  hints  for  increasing  the  quality  of
landmark  identification  systems.  Trajectories  of  human’s
movement  alone could reveal  what  spatial  objects  are  more or
less  significant  for  humans  but  automatic  extraction  of  such
information from the trajectories is often non-trivial.

Tracks  of  human  movement  (GPS  trajectories)  have  been  a
subject of analysis in several studies searching for identification
of significant locations. Ashbrook and Starner (Ashbrook et al.,
2003) used GPS tracks of people driving cars in order “to learn
significant  locations  and  predict  movement  across  multiple
users”.  They  identified  significant  locations  by  clustering
locations  where  people  spent  enough  time  to  consider  it  a
meaningful  stop.  For prediction the authors  deployed a second
order Markov model. Karagiorgou and Pfoser used GPS tracks of
cars to construct the transportation network graph (Karagiorgou
et al., 2012). They offered a computational model for identifying
intersections.  Zheng et  al.  (Zheng et  al.,  2009)  used  recorded
trajectories  to build a hyperlinked network of visited locations.
Ranking  this  network  with  a  HITS-based  algorithm  helped
authors to extract a collection of interesting locations (Kleinberg
et  al.,  1999).  This  approach  demonstrates  applicability  of the
algorithms found in the network theory for evaluating the ranking
of locations. All these studies focus more on significant locations
rather than on landmarks. However, the definitions of significant
locations  and  landmarks  share  many  overlapping  aspects.
Therefore, methods used in these studies should be at least partly
applicable to the identification of landmarks.

Some  studies  show  that  PageRank  produces  good  results  in
predicting  and  evaluating  movement.  Page  et  al.  (Page  et  al.,
1999) originally offered PageRank as “a method for rating Web
pages objectively and mechanically”. “The page has high rank if
the sum of the ranks of its backlink is high”. The rank represents
a  likelihood of a  web  user  eventually  lending  on a  web page
following  random  links.  El-Geneidy  et  al.  used  PageRank  to
calculate  the attractiveness  and accessibility of city parts  based
on the roaming of people between home and work (El-Geneidy et
al.,  2011). Jiang et al.  (Jiang et al.,  2008) applied PageRank to
predict the amount of traffic using the underlying street network
as the hyperlink-system. Ji  et  al.  used PageRank in identifying
landmarks from analyzing blog posts (Ji et al., 2010).

4 Taking up the idea of dynamic object attributes,  we prefer  to
further  differentiate  these non-static  properties  as  stated  in  our
introduction; semantic, dynamic (temporal), systemic attributes .



All  these  works  demonstrate  that  recorded  tracks  of  human
movement  contain  information  about  the  structure  of  space.
Moreover,  such  tracks  allow  reasoning  about  significance  of
geographical features. The  application of the analytical methods
should,  therefore,  allow  to  identify  structurally  salient
landmarks.  In  order  to  test  this,  we  analyze  tracks  of  player
movement  extracted  from  records  of  play  actions.  Multiple
studies  demonstrate  that  the  PageRank  algorithm is  helpful  in
determining a significance of a place. We apply this algorithm to
records of player movement  and report  the obtained  results.  In
the following sections we describe the location-based game that
can  provide  needed  data,  the  chosen  methods  for  trajectory
analysis and the result of their application to the sample data.

3. LOCATION-BASED MOBILE 
GAMES
Matyas (2008) studied the applicability of location-based games
to the acquisition of geographic information. He found that LBGs
could  be  used  to  collect  information  about  “geographic
environment”. This information refers to “geographic data about
real world objects, like roads or points of interest”. He suggests
that  this  data  can be retrieved  from GPS coordinates  found in
game’s  log-files.  The studies  discussed  in  the previous section
support the feasibility of such assumption (see Section 2).

Matyas  et  al.  (2008)  demonstrated  possibility  to  acquire
geographical  information  with  CityExplorer.  The  game
encourages players to take geographically referenced photographs
of objects that fit into a predefined category. Players choose the
categories themselves in the beginning of the game and may also
add new categories. Picking a “landmark” related category would
explicitly  set  CityExplorer  for  landmark  identification.  Using
CityExplorer  in  this  fashion  would  most  likely  result  in
harvesting a collection of salient landmarks. Using more precise
categories  like  “structural  landmark”  could  pose  problems  for
players  not  familiar  with  landmark  theory.  Identification  of
structural  landmarks  could be achieved through the analysis  of
movement  tracks of players (see  Section 2).  The CityExplorer,
however,  does  not  record  movement  paths  of  its  players.
Nevertheless, the game demonstrates that a location-based game
can be used for solving problems in the domain of geographical
information with “human computation” methods. 

A problem of data acquisition through LBGs is in ensuring the
validity of the data (Winter et al., 2011). CityExplorer addresses
the  problem  of  data  quality  and  offers  a  complex  after-game
validation procedure carried out by the players themselves. This
might rather discourage the potential players. Wetzel et al. offer
a  more elegant  solution  to the  validation  problem through the
design of TidyCity (Wetzel et al., 2012). TidyCity is a LBG that
encourages  people  to  create  riddles  about  the  geographical
whereabouts  of phenomena,  which  they describe  by means  of
texts or images. The riddles are then scattered around in the city.
Found by other  players,  the  riddles  are  solved  as  soon as  the
original phenomenon described is located and re-united with its
description.  Such mechanics make validation to be actual game
play. Studies of Matyas et at., and Wetzel et al. demonstrate that
not  only  LBGs  can  be  a  source  of  valuable  geographic
information, but also insure the information validity.

The  goal  of  the  BMBF-Project  “Landmarks  of  Mobile
Entertainment” is a system of landmarks, which comes into being
as a side effect of persistent play activities. The project aims to
achieve  this  goal  by  (1)  developing  mobile  games  that  are
(aesthetically) pleasurable to play in order to engage gamers into
persistent  play  (2)  initiating  mobile  games  and  (3)  anchoring
them within  a  Mobile  Game  Lab.  Persistent  play generates  a

stream of geographically referenced play actions. An analytical,
automatable procedure takes these actions as input and produces
novel  geographical  information.  Finally,  the  produced
information  is  fed  back  into  the  game  improving  the  play
experience.  In such a  manner  a  „player  movement  - landmark
detection  loop“  emerges.  In 2010  - 2012  the  project  members
developed  and  play-tested  several  location-based  games  and
started the Mobile Game Lab. Within 2013 we started to build
the landmark management system. In the following chapters we
introduce  “Ostereiersuche”,  which  is  one  of  these  games,  we
have  play-tested  at  Easter  2011,  2012  and  2013.  We use  the
movement  data  collected 2011 and 2012 to identify landmarks
and  to  study  this  first  instance  of  the  „player  movement  -
landmark detection loop“.

3.1 Ostereiersuche
Ostereiersuche,  Easter  egg  hunt,  is  a  mobile,  location-based
game resembling a popular German tradition according to which
families  go for a walk and the kids  look for colorfully painted
eggs hidden  by the  Easter  bunny. Similarly following minimal
navigational hints the players of the mobile game Ostereiersuche
have to  find  hidden  Easter  eggs,  each containing  a  coupon.  A
combination of three different coupons gives a player a chance to
win a real prize in a lottery. As Ostereiersuche is a digital game,
the eggs as well as the coupons are virtual but the locations they
are  hidden  at  are  real.  The  organizers  of  the  game
semi-automatically  hide  the  eggs  in  advance  at  places.
Considering that the major target group of the game is families
with  young children,  the  locations  are  intentionally  limited  to
public  parks.  Such  limitation  narrows  the  variety  of  spatial
objects  available  for  analysis  to  those  present  in  parks.  With
regard  to  the  first  step  of building  the  landmark  management
system  both  constraints,  the  simplicity  of  the  game  and  the
limitations of the geographical space helped to focus on the core
of our study.

Ostereiersuche  explicitly  defines  locations  that  a  player  must
visit in order to progress in the game. These are the locations of
hidden virtual eggs. The egg distribution is done as follows. For
a play area  outlined  by a polygon, a  computer  program places
eggs  along  parallel  scan-lines.  The  distance  between  two
neighbor  eggs  on  the  same  scan-line  as  well  as  between
scan-lines themselves is chosen to be 25 meters. After filling the
complete area in this manner all  eggs are shifted for a random
offset of 0 to 10 meters. The algorithm would finally, eliminate
the  eggs  placed  at  locations  manually  marked  for  exclusion
(lakes,  building  roofs,  streets  with  traffic).  This  procedure
ensures an even distribution of eggs inside each play area. Such
distribution  of eggs creates  a kind  of a “sensor  grid” over the
play area.  An example  of the egg distribution can be found in
Section  5  on the  figure  5.3.  Combining consequent  actions  of
collecting an egg allows reconstructing the movement trajectory
of a player. This trajectory can be used to infer the structure of
space and reason about salience of spatial elements (see Section
2).  Ostereiersuche records discrete  positions of players and not
continuously  positions  of  its  players.  The  game  records
geo-referenced play-actions.

The game rules,  are  very relaxed  regarding the navigation and
the order of collecting. The players are only provided with hints
on  the  distance  to  the  nearest  hidden  egg.  When  a  player
approaches  an  egg to  a  distance  less  than  20  meters  the  egg
appears  on a  map.  Only then  the  player  may collect  that  egg.
Players are free to choose the most efficient navigation strategy. 



4. LANDMARK IDENTIFICATION IN 
PRACTICE
Existing studies  of landmark  identification (see Section 2)  and
location-based games (see Section 3) suggest that identification
of structurally salient landmarks using play actions recorded with
Ostereiersuche  is  possible.  In order  to test  this  in  practice  we
developed  the  following  method.  The  method  consists  of four
steps divided into two general phases: 1) building the movement
model and 2) computing structural salience. The steps in phase 1
turn  the  movement  trajectories  of  players  into  a  directed
movement  graph.  The  weights  of the  graph  edges  are  derived
from the probabilities of player movement. The probabilities are
in turn derived from the actual play actions. The steps in the part
2 use the PageRank algorithm to compute the structural weight of
the  nodes  in  the  graph.  Finally,  we select  the  nodes  with  the
maximal  local  value  assigned  by the  algorithm.  The  following
sections describe the method in detail.

4.1 Building the movement graph
In the first  step  we partition a chosen play area into a grid of
quadratic  cells.  The  geometry of an  area  in  Ostereiersuche  is
defined by a polygon. In order  make the tessellation easier  we
first  calculate  an  axis-aligned  bounding  box  of  the  area  that
envelops the area completely. This  bounding box is then filled
with rows of equally sized cells  starting in  a northwest  corner
and proceeding towards  southeast.  Each row is  populated  with
cells from west to east until a new cell is completely out of the
bounding box.  The  main  reason  for partitioning the  area  is  to
enable  a  possibility  to  compare  its  different  sub-regions  with
each other and locate those that stand out in their value.

The  size  of  the  grid  cells  is  chosen  respecting  the  following
considerations.  On one hand it  must be big enough to generate
meaningful  results  with  a relatively small  dataset  compared to
the  size  of  the  play-area.  On  the  other  hand  it  must  allow
unambiguous conclusions about underlying landmarks - at  least
in  public  parks  where  Ostereiersuche  was  played.  For  urban
environments smaller cell-sizes might have to be selected, since
there are more potential landmarks (Snowdon et al. 2009). This,
however, also requires a high density of player actions.

The  second  step  starts  with  a  calculation  of  the  movement
probabilities based on the following movement model. Being at
any cell  of the  generated  grid  only movement  in  four cardinal
directions is allowed: north,  east,  south or west.  Taking one of
these  directions  would  result  in  landing in  one of the  directly
neighboring cells laying in corresponding direction. Additionally
it is allowed to stay in the current cell. The light blue arrows on
Figure  4.1  show the  possibility  of movement.  The  reason  for
selecting such constrained model is its simplicity.

Based on the movement model we calculate values of movement
probability by applying a first order Markov chain to the data in
the installed grid. The calculation of probability values is based
on the actual movement trajectories of players. For a grid with no
play  actions  each  cell  has  equal  probability  of  taking  any
movement  decision.  It  is  0.2.  The  probability  of moving in  a
certain direction would increase with each pair of a consequent
play actions originating in the current cell and leaving the cell in
that  direction.  The  probability of staying in  the current  cell  is
increased  with  each  pair  of  consequent  play  actions  both
originating and ending in this cell.

Figure 4.1 Distribution of the movement probabilities in a 
sample cell

To  demonstrate  the  calculation  of  probabilities  consider  the
following example. Player 1 collected four eggs moving from the
middle cell in a northeast direction. Player 2 moved from west to
east  and collected three eggs (see Figure 4.1).  The middle  cell
has 1 pair  of actions starting and ending in this  cell; 1 pair  of
actions starting in this cell and ending in the northern neighbor
and  1  pair  of  actions  starting  in  this  cell  and  ending  in  the
eastern neighbor. The distribution of pairs is therefore: self – 1,
north – 1, east – 1, south – 0, west – 0. Based on this distribution
the probabilities of staying in cell, moving north or east increase
from 0.2 to 0.25,  whereas the probabilities  of moving south or
west decrease from 0.2 to 0.125.

In the final  step  of the  first  phase  the  generated  cells  and the
movement  probabilities  are  used  to  form  a  graph.  The  cells
become the graph vertices.  The edges are constructed based on
movement model described earlier. Each vertex is linked to itself
and its direct neighbors (in the grid) on the north, east, south and
west.  All  middle  cells  become vertices  with  5 outgoing edges;
corner cells become vertices have 3 outgoing edges; border cells
become vertices with 4 outgoing edges. The edges are weighted
according  to  the  movement  probability.  For  example,  the
probability  of  moving  north  out  of  a  given  cell  becomes  the
weight of the edge connecting the vertex of this cell to the vertex
of the neighbor cell on the south.

4.2 Calculating the structural salience
The structural  salience is computed using the movement graph
build  in  the previous steps (see Section 4.1).  According to the
classification introduced by Sorrows and Hirtle (see Section 2),
structural  salience is  a characteristic  of a landmark  defined by
the prominence of its spatial position. One quality that influences
the  prominence  of  a  spatial  position  is  its  accessibility,  or  a
measure of how easy it is for a person to reach a certain location.
We define accessibility following this intuition. The accessibility
of a node is a probability for an agent to land on this node, after
being placed at a random node and following the outgoing links
according  to  the  movement  model  and  the  distribution  of the
movement probabilities. The accessibility of a location is high if
the  likelihood  of  encountering  this  location  is  high.  Such
definition of accessibility is  very close to the  definition  of the
PageRank  value  (see  Section  2).  We  therefore  use  a  value
assigned by the PageRank algorithm to a node as a measure of its
structural salience.



We apply PageRank to calculate the rank of each vertex in the
movement graph.  Following the analogy of a randomly clicking
web user described by Page et al., the intuition of the PageRank
is  as  follows.  A person  moves  along  the  graph  starting  at  a
random node.  The  person  follows  the  rules  of  the  movement
model  discussed  earlier.  However,  at  every  node  the
movement-session ends with a probability of (1-d). If the session
ends the person starts a new one beginning at a random node in
the graph. The PageRank value of a node models the chance that
this person resides at that node at a random point in time.

The calculation of the PageRank values is best explained through
the pseudo code found below.

function PageRank (G)  

R=( 1
N )

(0≼i≼N )

do
temp=R

PRi=
1−d

N
+dx (∑i≼N

PRi× p ji)
while ( distance ( R ,temp )>δ  )

return R  

Where  N  is the number of cells;   PRi the PageRank

of  the  i  -th  cell;  R=( 1
N )

(0≼i≼N )

 is  the  initial

PageRank value;   p ji is  the predicted chance of movement

from cell   i  to cell  j  ; d   is  the chance that  the
random movement does not stop after the current cell is visited; 

δ is a threshold controlling the level of accuracy.

In final step we extract the cells that are local maxima regarding
the value assigned by the PageRank.  This  step is useful,  since
navigational  landmarks  are  local  phenomena,  which  will  be
identified  because  they have some outstanding feature  in  their
greater surroundings (see Section 2). If the PageRank value of a
cell is higher than those of its neighbors, it indicates, that it does
have some attracting feature in it or is highly accessible.

5. LANDMARK IDENTIFICATION IN A
PARK
In  order  to  test  the  possibility  of  using  data  collected  with
Ostereiersuche  for  identification  of  landmarks,  we  apply  the
method presented  in  the previous chapter  to the data  collected
over Easter in 2011 and 2012. In the following we first describe
the  collected  data.  Then,  we  describe  and  discuss  the
identification results.

5.1 Player-generated data
As Easter is an annual event, Ostereiersuche is officially played
only  two  days  in  a  year  during  Easter  Sunday  and  Easter
Monday. By the moment of writing the game was staged on April
24th and 25th in 2011, and April 8th and 9th in 2012. In 2011 it
was played across all public green areas in Bremen, Germany. In
2012 the area scaled up to include parks in 16 major cities  in
Germany. Table 1 gives a general overview of the difference in
collected data between 2011 and 2012. The area of Bürgerpark
(the  city  park  in  Bremen)  stands  out  in  both  years  with  the

number of recorded play actions. We therefore chose this area for
application of the method discussed above.

Figure  5.1  shows  the  locations  of  the  eggs  hidden  in  the
Bürgerpark area. 1983 eggs were distributed in Bürgerpark using
the  algorithm  described  earlier  (see  Section  3).  In  two
consequent  play events  in  2011 and 2012 58 players  collected
792  eggs  performing  980  play actions.  The  information  about
these  play  actions  was  recorded  in  a  database.  The  database
management  system  supported  spatial  data  types  and  queries.
Each record contains  information  about: 1)  a  type of the  play
action,  2)  an  identification  number  (id)  of  a  player  who
performed  the  action,  3)  a  timestamp  and  4)  geographical
position of the user in the moment of performing action.

Table 5.1 Play actions recorded with Ostereiersuche in 2011
and 2012.

Parameter
2011 in
Bremen

2012 in 16
cities

Both years
in

Bürgerpark

Total number of play 
actions

1,390 7,020 980

Total number of players 127 595 71

Total number of players
collected at least one 
egg (active players)

77 243 58

Total number of eggs 2,518 47,054 1983

Total number of 
collected eggs

580 4,695 792

Figure 5.1 Location of play actions (red dots) alongside with 
hidden eggs (blue dots) in the south part of the Bürgerpark

Figure 5.1 shows positions of players  while  performing a play
action (red dots). The small blue dots show the positions of the
hidden eggs.  The positions of the players  were recorded using
GPS sensors built  into the smartphones.  In 2011 the game was
available  only  for  iOS.  In  2012  an  Android  version  was
additionally offered. The information about the device model is
unavailable in the dataset; therefore it is impossible to justify the
accuracy of player positions.



The method described in the previous section was applied to this
data with the following modification. The size of grid cells was
experimentally chosen to be 2500 square meters  (50m x 50m).
For the selected area and the data set this size appeared to yield
to most meaningful results.  Partitioning the area of Bürgerpark
using cells of this size generated 3015 cells arranged in 67 rows
and 45 columns.  2436 cells  contain  no play actions;  579 cells
contain between 1 and 9 actions. Figure 5.2 displays the southern
part  of  Bürgerpark  partitioned  in  this  fashion.  Also  refer  to
Figure 5.3 to get the intuition on the distribution of play actions
among the cells. More than a half of such cells contain only one
action.

Figure 5.2 The southern part of Bürgerpark partitioned into 
50 to 50 meter cells

Figure  5.3  Distribution  of  play  actions  between  cells  in
Bürgerpark

5.2 Results
The application of the method described in section 4 to the data
described in section 5 allowed us to calculate ranking of cells in
Bürgerpark. In accordance with the last step of the identification
method, among all cells we manually selected those, which have
the highest local value of the rank. We then mapped these cells
onto a  map  rendered  from the  openstreetmap  data  for  further
inspection. These 24 manually selected locations are highlighted
in the Figure 5.5. The number in the bottom-right corner of each
highlighted  location  represents  the  sequential  number  of  the
identified location. We numbered the cells manually to be able to
reference them from the text.

From 3015 cells  remained  only those that  have maximal  local
value calculated with PageRank.  Even though rank values may
differ on the remaining cells, each one has a high environmental
meaning  to  its  surroundings.  Only 24  cells  stand  out  as  local
maxima.  On  the  first  sight  readers  familiar  with  Bürgerpark
Bremen can qualitatively validate, that the most famous points of
interest  are  marked  - i.e.  Coffeehouse  Emma am See (cell  4),
Parkhotel (cell 18) with Hollersee (cell 21, 24), Marcusbrunnen
and Hollerbank  (cell  13),  Dyckhoffpavillion (cell  11),  entry to
Tiergehege (cell 1), Remmersbank (cell 15), park administration
(cell  23) - important crossings (cell  19),  especially near entries
(cell  3,  12,  17)  and  between  points  of  interest  (cell  22)  are
marked  as  well.  Places  that  are  especially  interesting  for  the
expected target group - i.e. playgrounds (cell 8, 9, 16, 20) - are
highlighted too. 

Figure 5.5 Identified significant locations in the southern 
part of Bürgerpark

5.3 Discussion
Figure 5.1 demonstrates that the distribution of eggs in the area
of Bürgerpark was relatively even. In contrast the distribution of
play actions is not (see Figure 5.2). Some parts of the park were
more explored  by the players  than the  others.  This  shows that
constrains  other  than  game  rules  direct  player  movement.  In
many cases the locations of the play actions map to the walking
paths. Despite it might cost more walking, players prefer staying
on  the  path  rather  than  entering  a  lane.  The  players  prefer
convenience  for  efficiency  in  the  game.  This  fact  proves  the
assumption  that  this  game  does  not  interfere  with  usual
movement  of the  players  within  the  park  (see  Section 3).  The
game does not dictate players where to go. In contrast, the spatial
structure  of  the  park  seems  to  have  high  impact  on  the
distribution  of the  play actions.  Obviously,  players  follow the
walking paths. This confirms the results of Matyas’s studies (see
Section  3)  that  LBGs  can  be  used  for  collecting  information
about the spatial structure. 

Figure 5.5 shows the locations of the cells with the highest local
value of PageRank. Cells number 2, 3, 4, 5, 7, 8, 11, 12, 13, 14,
15, 16,  17, 19, 22, 23 and 24 either themselves contain a path
intersection or one of their direct neighbors do. It demonstrates
that  even application of a  simple  ranking method (such as  the



one  we  offered  in  Section  4)  allows  identification  of  some
structurally significant nodes. 

There  is  however  significant  evidence to the inaccuracy of the
methods  applied.  Cells  number  5  and  10  seem  to  have
unreasonably high ranking.  And further  there  are  intersections
that were not identified. For example, the space between cells 7,
10 and 15 has several of intersections, which is clearly seen on
the Figure 5.5. Figure 5.4 shows that user actions for this part of
the park were recorded. It did not though result  in high ranking
for  the  corresponding  cells.  This  is  a  sign of problems  in  the
chosen methods. 

The  limitations  of  the  method  also  become  visible  in  the
identification  of bridges.  The  cell  number  1 contains  a  bridge
leading to the zoo. The zoo is, no doubt, a significant location for
parents  with  children,  who  are  the  major  target  group  of
Ostereiersuche (see Section 3). There is, though, another bridge
between cells number 1, 4 and 5, which was not ranked high by
the algorithm. This  bridge is a major structural  landmark as it
connects two parts of the widest street in the park. According to
the map it  is  also accessible  from multiple  locations and there
were  play  actions  recorded  (see  Figure  5.3).  These  facts
demonstrate  a need to revise the identification method and the
correctness  of  its  implementation.  The  simplicity  of  our
movement model might also lead to producing artifacts. Limiting
movement  to  only  5  artificial  directions  is  certainly  very
restrictive  and  roughly  models  actual  movement  of  players.
Instead of the artificial  movement graph one should consider  a
“natural”  graph,  which reflects  crossings  as  nodes  and  natural
paths as edges.

As we have discussed earlier  the limited amount of data  bears
the risk to highlight places that do not seem to have a magnifying
feature  to the general  public.  Highlighted  places could contain
personal  landmarks  that  cannot  be  discovered computationally.
The cells 5, 10 might contain such landmarks or they could just
be highlighted by chance. After all,  we cannot be sure,  that all
the  previously  mentioned  landmarks  were  influencing  the
movement  of players.  Players  could  have  had  other  individual
intentions that led their  movement.  Only a larger datasets  with
more  different  players  will  assure  which  places  stand  out  in
regards of accessibility and attractiveness. 

Based on the obtained results it is rather hard to draw any certain
conclusion. The application of PageRank to the movement model
constructed  from  the  play  actions  did  produce  structurally
significant  locations.  There is however a range of areas  ranked
low by PageRank  that  have  both  play-actions  and  structurally
salient  features  (like  intersections  or  bridges).  It  remains
therefore  uncertain  if  the  play  actions  recorded  in  a
location-based game provide a reliable source for improvement to
existing landmark identification methods. There exists however a
strong theoretical evidence for such a possibility (see Sections 2
and 3). Another study with a bigger dataset and a stronger focus
on  the  quality  of  the  analytical  methods  might  therefore  be
reasonable.

5.4 Future work
As suggested in the previous section, any consequent attempts of
landmark  identification  with  Ostereiersuche  must  start  from
revising  the method for identification  of structural  importance.
Andrienko et al. (Andrienko et al., 2012) suggest that tessellation
might  hinder  extracting  significant  places  as  they  can  have
“arbitrary  shapes  and  sizes  and  irregular  spatial  distribution”.
They  developed  a  method  that  does  not  require  partitioning.
Andrienko  et  al.  also  suggests  using  density  clustering  for
eliminating  noise  data.  Applying these  ideas  can make  results

more accurate since there would be no division of the area into
cells  without  preliminary knowledge  about  the  areas  structure
and the player’s movement.

Then,  obviously,  more  reliable  results  are  produced  if  more
actions  can be  taken  into  consideration.  Considering  semantic,
dynamic  and  systemic  attributes  in  landmark  identification
requires  more  instances  of  recorded  interaction  than  collected
with Ostereiersuche in two years. The solution here is to include
the  region,  for  which  the  landmarks  should  be  identified  into
multiple  games.  This  step  should  ensure  a  continuous  flow of
play actions for the identification procedure. We plan to establish
such flow for the area of Ahaus,  Germany. For this  reason we
build a local instance of Mobile Game Lab in cooperation with
“Ahaus Marketing und Touristik” GmbH5.  We plan to make a
new iteration in the development  of the landmark management
system, which improves the identification results. 

A future  development  step  of the  method  could  automatically
retrieve semantic information about the cells. Ying et al. (Ying et
al.,  2011)  provide  a  guideline  for  a  framework  that  assigns  a
geospatial cell to landmarks by analyzing a geographic semantic
information database. In their framework Ying et al. assume, that
each cell can be assigned to only one landmark, but they do not
provide  a  guideline  in  case  unambiguous  assignments  are  not
possible.  Elias  (Elias,  2003)  proposes  a  formalism  to  decide
which  objects  in  a  certain  radius  of  a  point  of  view  can  be
considered landmarks. In her studies she focused on databases of
buildings. Sadeghian et al. (Sadeghian et al., 2008) suggest how
this formalism could be altered to include different object types
and add semantic and dynamic information about the objects. By
preprocessing  a  geographic  semantic  information  database  this
idea can be embedded into the suggested framework.

6. SUMMARY AND CONCLUSION
Using  Ostereiersuche  this  paper  explored  the  possibility  to
identify structural landmarks using movement data collected in a
location-based game. Despite continuous advancement, landmark
identification remains a difficult computational task for GIS. As
Sadeghian pointed out, partially it is due to the underestimation
of the  importance  that  actual  interaction  of people  with  space
has.  The observation of how people use places may be used to
reason about their significance. Using tracks of human movement
should  therefore  improve  existing  landmark  identification
systems.  The  design  of  Ostereiersuche  allows  reconstruct
movement  of  players  without  continuous  tracking  of  their
location.  The  game  mechanics  put  minimal  constraints  on
navigation. 

In  order  to  test  how  applicable  Ostereiersuche  is  for
identification of structurally salient  landmarks,  we developed a
simple  identification  method  based  on  Markov  chains  and
PageRank.  We applied  this  method to the  data  collected  with
Ostereiersuche  in  a  city  park  in  Bremen,  Germany.  The
application  revealed  indefinite  results.  On  one  hand  they
demonstrate  that  Ostereiersuche  has  a  potential  for  landmark
identification.  The  most  significant  cells  were  often  included
paths  intersections  or meaningful  places  in  park.  On the other
hand  the  results  showed  flaws  in  the  chosen  method.  It  is
sensitive to the quantity of data and might lack precision due to
tessellation as argued by Andrienko et al.

In the future iterations of the landmark management system we
plan to address all revealed issues. We will reconsider the use of
naive movement model and the application of PageRank, as this

5  „Ahaus Marketing und Touristik” GmbH: 
http://www.ahaus.de/ahausmarketingtouristik.0.html



seems to cause many artifacts.  We plan to abandon tessellation
and include filtering out of noise as suggested by Andrienko. We
expect to establish a continuous flow of play actions through a
local instance of the Mobile Game Lab in Ahaus.

7. ACKNOWLEDGMENTS
The authors of this  paper  thank ACM SIGSPATIAL’13 review
committee  for their  elaborated  feedback on the first  version of
this paper. 

8. REFERENCES
Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., & 

Wrobel, S. (2012). Scalable Analysis of Movement Data 
for Extracting and Exploring Significant Places. IEEE 
Transactions on Visualization and Computer Graphics, 
1–1.

Ashbrook, D., & Starner, T. (2003). Using GPS to learn 
significant locations and predict movement across multiple
users. Personal and Ubiquitous Computing, 7(5), 275–286.

El-Geneidy, A., & Levinson, D. (2011). Place Rank: Valuing 
Spatial Interactions. Networks and Spatial Economics, 
11(4), 643–659. 

Elias, B. (2003). Extracting landmarks with data mining 
methods. Spatial information theory, 375–389. 

Fang, Z., Li, Q., Zhang, X., & Shaw, S.-L. (2012). A GIS data 
model for landmark-based pedestrian navigation. 
International Journal of Geographical Information Science,
26(5), 817–838. 

Hile, H., Vedantham, R., Cuellar, G., Liu, A., Gelfand, N., 
Grzeszczuk, R., & Borriello, G. (2008). Landmark-based 
pedestrian navigation from collections of geotagged 
photos. Proceedings of the 7th International Conference on
Mobile and Ubiquitous Multimedia - MUM  ’08 (p. 145). 
New York, New York, USA: ACM Press. 

Ji, R., Xie, X., Yao, H., & Ma, W.-Y. (2009). Mining city 
landmarks from blogs by graph modeling. Proceedings of 
the seventeen ACM international conference on 
Multimedia - MM  ’09 (p. 105). New York, New York, 
USA: ACM Press. 

Jiang, B., Zhao, S., & Yin, J. (2008). Self-organized natural 
roads for predicting traffic flow: a sensitivity study. 
Journal of Statistical Mechanics: Theory and Experiment, 
2008(07), P07008. 

Karagiorgou, S., & Pfoser, D. (2012). On vehicle tracking 
data-based road network generation. Proceedings of the 
20th International Conference on Advances in Geographic 
Information Systems - SIGSPATIAL  ’12 (p. 89). New 
York, New York, USA: ACM Press. 

Kleinberg, J. M., Kumar, R., Raghavan, P., Rajagopalan, S., & 
Tomkins, A. S. (1999). The web as a graph: 
measurements, models, and methods, 1–17. 

Klippel, A., Richter, K. F., & Hansen, S. (2005). Structural 
salience as a landmark. Workshop Mobile Maps. 

Lynch, K. (1960). The Image of the City (Harvard-Mit Joint 
Center for Urban Studies) (p. 202). MIT Press. 

Mark, D. M., Freksa, C., Hirtle, S. C., Lloyd, R., & Tversky, B. 
(1999). Cognitive models of geographical space. 
International Journal of Geographical Information Science,
13(8), 747–774. 

Matyas, S., Matyas, C., Schlieder, C., Kiefer, P., Mitarai, H., & 
Kamata, M. (2008). Designing location-based mobile 

games with a purpose. Proceedings of the 2008 
International Conference in Advances on Computer 
Entertainment Technology - ACE  ’08 (p. 244). New York,
New York, USA: ACM Press. 

Nothegger, C., Winter, S., & Raubal, M. (2004). Selection of 
Salient Features for Route Directions. Spatial Cognition &
Computation, 4(2), 113–136. 

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999, 
November 11). The PageRank Citation Ranking: Bringing 
Order to the Web. Stanford InfoLab. 

Peter Kiefer, K. S. (2008). A Framework for Mobile Intention 
Recognition in Spatially Structured Environments. 31st 
German Conference on Artificial Intelligence (pp. 28–41). 
CEUR Vol-396. 

Raubal, M., & Winter, S. (2002). Enriching Wayfinding 
Instructions with Local Landmarks, 243–259. 

Sadeghian, P., & Kantardzic, M. (2008). The New Generation of 
Automatic Landmark Detection Systems: Challenges and 
Guidelines. Spatial Cognition & Computation, 8(3), 
252–287

Snowdon, C., & Kray, C. (2009). Exploring the use of landmarks
for mobile navigation support in natural environments. 
Proceedings of the 11th International Conference on 
Human-Computer Interaction with Mobile Devices and 
Services - MobileHCI  ’09 (p. 1). New York, New York, 
USA: ACM Press. 

Sorrows, M. E., & Hirtle, S. C. (1999). The Nature of 
Landmarks for Real and Electronic Spaces. Proceedings of
the International Conference on Spatial Information 
Theory: Cognitive and Computational Foundations of 
Geographic Information Science (pp. 37–50). London, UK:
Springer-Verlag. 

Vinson, N. G. (1999). Design guidelines for landmarks to 
support navigation in virtual environments. Proceedings of
the SIGCHI conference on Human factors in computing 
systems the CHI is the limit - CHI  ’99 (pp. 278–285). 
New York, New York, USA: ACM Press. 

Von Ahn, L., & Dabbish, L. (2008). Designing games with a 
purpose. Communications of the ACM, 51(8), 57. 

Wetzel, R., Blum, L., & Oppermann, L. (2012). Tidy city. 
Proceedings of the International Conference on the 
Foundations of Digital Games - FDG  ’12 (p. 238). New 
York, New York, USA: ACM Press. 

Winter, S., Tomko, M., Elias, B., & Sester, M. (2008). 
Landmark hierarchies in context. Environment and 
Planning B: Planning and Design, 35(3), 381–398. 

Winter, Stephan; Richter, Kai-Florian.; Baldwin, T.; Cavedon, 
L.; Stirling, L.; Duckham, M.; Kealy, A.; Rajabifard, A. 
(2011). Location-Based Mobile Games for Spatial 
Knowledge Acquisition. In K. Janowicz (Ed.), Cognitive 
Engineering for Mobile GIS (pp. 1–8). Belfast, Maine, 
USA.

Ying, J. J.-C., Lee, W.-C., Weng, T.-C., & Tseng, V. S. (2011). 
Semantic trajectory mining for location prediction. 
Proceedings of the 19th ACM SIGSPATIAL International 
Conference on Advances in Geographic Information 
Systems - GIS  ’11 (p. 34). New York, New York, USA: 
ACM Press. 

Zheng, Y., Zhang, L., Xie, X., & Ma, W.-Y. (2009). Mining 
interesting locations and travel sequences from GPS 
trajectories. Proceedings of the 18th international 
conference on World wide web - WWW  ’09 (p. 791). 
New York, New York, USA: ACM Press.


